

Faire avancer la sûreté nucléaire

Dosimetry for epidemiology of internal emitters - risk assessment vs operational radiation protection

EURADOS Winter School

Karlsruhe

Thursday 2nd March 2017

E. DAVESNE, E. BLANCHARDON

Summary

- 1. Context
- 2. Doses for risks vs doses for radiological protection
- 3. Example
- 4. Discussion on the need of guidelines and dose reliability
- 5. Conclusion

Evaluation of risk associated with radionuclide intakes

- Now based on:
 - Epidemiological follow-up of Hiroshima and Nagasaki A-Bomb survivors
 - Dosimetric system including biokinetic models and weighting factors

Some results on populations exposed to intake of radionuclides:

- Residential radon (Krewski et al, 2005, Darby et al, 2006...)
- Population in contaminated areas (Cardis et al, 2005...)
- Thorotrast injected patients (Travis et al, 2003, Becker et al, 2008...)
- Radium watch dial painters (Rowland et al, 1983, Spiers et al 1983...)
- Uranium miners (Rage et al, 2014, Kreuzer et al, 2015...)
- Uranium millers (Boice et al, 2008, Kreuzer et al, 2015...)
- Mayak workers (Sokolnikov et al, 2016, Kuznetsova et al, 2016...)
- Uranium enrichment (Yiin et al, 2016...)...

Estelle DAVESNE / IRSN - EURADOS Winter School - Karlsruhe - 2nd March 2017

Few with dose assessments from bioassay data

Risk evaluation principle

- Need of reliable dose estimates and confidence interval
- But no reference methods to estimate them

Summary

- 1. Context
- 2. Doses for risks vs doses for radiological protection
- 3. Example
- 4. Discussion on the need of guidelines and dose reliability
- 5. Conclusion

Purpose

Operational RP

To verify or not the compliance of exposure with dose limits

- ⇒Overestimation is not a problem, underestimation is problematic.
- Overestimation is often preferred.

Epidemiology

To assess risks

- Dose overestimation leads to risk per dose underestimate, underestimation leads to risk per dose overestimate. □
- Unbiased estimates are needed.

Output

- Operational RP
- Effective dose
- Commitment period = 50 years
- Use of reference biokinetic and dosimetric model
- ⇒ Published dose coefficient
- ⇒ Easy validation

Several tools/software are available.

Epidemiology

- Dose absorbed in relevant tissue:
 - Lung,
 - Liver...
- Absorbed during a year
- Annual absorbed dose coefficient are not published
- ⇒ Validation can be tricky.
- Dedicated tools are needed.

Number of dose assessments

Operational RP

- Workers with unusual monitoring data
 - Depending on facilities
 - In 2015, in France, in nuclear industry facilities, 2 registered internal dose estimates (IRSN, 2016)
- Assessment of intakes for
 - A year exposure
 - An abnormal event
- ⇒Limited number of bioassay
- Individual dose estimates are possible.

Epidemiology

- Dose assessment for the whole cohort
 - Depending on cohorts and effects
 - For the TRACY cohort (Samson et al, 2016): 12,000 workers in the cohort, 3,000 with digitalized bioassay
- Assessment of intakes for
 - Each worker's whole career
- ⇒100,000s of bioassay data
- Automation is needed.

Bioassay

Operational RP

- Urine, faeces, lung, wholebody...
- If needed,
 - New analysis can be performed.
 - More sensitive techniques can be used.
 - Re-analysis is possible.
- ⇒New data can be provided.
- 7 Dose estimates can be refined by new data.

Epidemiology

- Urine, faeces, lung, wholebody...
- Even if needed,
 - No new analysis,
 - No more sensitive techniques,
 - No re-analysis.

- ⇒No new data can be provided.
- Only the best estimate from available data.

Bioassay result

Operational RP

- Value below reporting level
 - Given as "<0.2mBq/l" for example</p>
- ⇒ Value of the reporting level is known.
- Possibility to contact the laboratory
 - ⇒To try improving the result,
 - ⇒To obtain the uncensored data with uncertainty.
- Dose estimates can be refined by new data.

Epidemiology

- Some value below reporting level
 - Given sometimes as "<RL"
- ⇒Need to assume a value for "RL"
- ⇒No possibility to obtain uncersored data with uncertainty.
- ⇒No new data can be provided.

Only the best estimate from available data.

Bioassay result

- Operational RP
- Specific information on:
 - Collection period
 - Measurement technique
 - Date of sampling
 - Bioassay purpose (routine, special...)
- Good information on measurement uncertainty
- ⇒Good reliability of data
- Dose estimates can be refined by new data.

Epidemiology

- Often, no specific information on:
 - Collection period
 - Measurement technique
 - Date of sampling
 - Bioassay purpose (routine, special...)
- No information on measurement uncertainty

Only the best estimate from available data.

Exposure period

Operational RP

- Routine/special monitoring
- ⇒Information on exposure period
 - ⇒normal conditions,
 - ⇒high risk activity dates
 - ⇒air sampler alerts
- Possibility to ask worker or management for more precise information

Dose estimates can be refined by new data.

Epidemiology

- Rarely information on special/routine monitoring
- ⇒Scarce information on exposure period from
 - ⇒Incident registry
 - ⇒ Medical files
 - ⇒Ambient air monitoring
 - ⇒ Interviews
- ⇒Interesting information provided by Job Exposure Matrix
- Only the best estimate from available data.

Physico-chemical parameters

Operational RP

- Individual workplace identified
- ⇒Sometimes, exposure is known:
 - Chemical forms of handled compounds
 - ⇒ Particle size distribution
 - ⇒ Isotopic composition
- Possibility to obtain more precise data by contacting worker and radiological protection services.
- Dose estimates can be refined by new data.

Epidemiology

- Workplace sometimes identified by JEM
 - ⇒Information on exposure:
 - ⇒Chemical forms
 - ⇒Isotopic composition
 - ⇒Information sometimes uninformative
 - ⇒All chemical forms possible...
 - ⇒Information not known
 - ⇒Particle size distribution
- No possibility to obtain more precise data
- Only the best estimate from available data.

Summary

- 1. Context
- 2. Doses for risks vs doses for radiological protection
- 3. Example
- 4. Discussion on the need of guidelines and dose reliability
- 5. Conclusion

Bioassay Database

Example

Job Exposure Matrix (JEM)

Example

Incident register

Worker_1

Analysis date

Example

Data base

Individual input files

Containing:

- Exposure conditions
- Bioassay

Computing cluster

Individual output files

 $\qquad \longleftarrow$

2h for 2900 workers

VBA macro

Synthesis file

Containing:

- Input files content
- Doses

Dose assessment for a case-control study

Zhivin et al, submitted

Cumulative dose (mGy)	Mean		IQR (25-75%)		Maximum	
Organ-specific uranium dose	Cases	Controls	Cases	Controls	Cases	Controls
Lung	1	0.7	0-1	0-0.6	27	11
Heart	0.01	0.01	0-0.01	0-0.01	0.2	0.3
Kidney	0.2	0.2	0-0.2	0-0.2	4	4
Whole-body external γ-radiation dose	3	2	0-0.3	0-0.2	72	70

Dose assessment

- Most dosimetrists involved in dose assessments for risk estimates are specialists in dose for radiological protection.
- Estimating doses for epidemiological study is different.
- Guidelines available for radiological protection are not directly applicable for risk estimates. Guidelines related to dose calculation for compensation scheme could be considered.
- Need for guidelines to assess doses for epidemiological studies
- Need to evaluate the reliability of doses

Summary

- 1. Context
- 2. Doses for risks vs doses for radiological protection
- 3. Example
- 4. Discussion on the need of guidelines and dose reliability
- 5. Conclusion

Guidelines

CURE project:

- Concerted Uranium Research in Europe
- Program funded by EU from July 2013 to December 2014
- Objective
 - to develop a multidisciplinary and collaborative research protocol, integrating epidemiology, biology/toxicology and dosimetry to improve both the understanding and quantification of biological and health effects associated with occupational uranium exposure in Europe.
- One of the results (Laurent et al, 2016, Blanchardon et al, 2015)
 - A dosimetric protocol to estimate doses in a pooled epidemiological study.
- Dosimetric protocols for Alpha-risk (Bingham et al, 2016) and Mayak (Birchall et al, 2016)
- 7 These protocols can help to estimate doses but not to evaluate the reliability of dose assessments.

Intercomparison exercise

Aims

- To identify major sources of uncertainty
- To quantify uncertainty on dose estimates

Mean

- Intercomparison exercise inside the Task 7.5 Uncertainty on dose assessments of EURADOS WG 7 on internal dosimetry
- Interpretation of results targeted to assess uncertainty on dose

Data provided to the participants

- Raw data for three workers of the French cohort of nuclear workers:
 - Worker 1 presenting several acute intakes,
 - Worker 2 with only one bioassay higher than reporting level (RL) ,
 - Worker 3 whose all bioassay data were below RL.

Main results

- **7** 16 participants
 - Data sent by participants, for each worker
 - Dose estimates
 - Exposure condition hypotheses
 - Bioassay data interpretation
 - Estimation of robust mean and robust standard deviation
 - Review of the different procedures to estimate doses

Committed lung dose for Worker 1

Robust mean = 78.0 mSv, Robust SD = 95.9 mSv

↗ Relative SD = 123%

Main results

- Significant uncertainty on dose reconstructed for uranium workers
 - Dose estimates distributed over several orders of magnitude:
 - Ratio Max/Min of 383 for lung equivalent doses estimated for Worker 1.
- What procedures are consensual?
 - the use of ICRP biokinetic and dosimetric models
- What procedures introduce uncertainty?
 - treatment of data below reporting level
 - pulmonary absorption
 - exposure period

Summary

- 1. Context
- 2. Doses for risks vs doses for radiological protection
- 3. Example of data available in an epidemiological study
- 4. Discussion on the need of guidelines and dose reliability
- 5. Conclusion

Conclusion

- To estimate doses for risk estimates is different from assessment procedure for radiological protection.
- To define guidelines could be useful.
- And work is underway to estimate dose reliability.

Thank you for your attention