

WG3 – Environmental dosimetry 7th EURADOS/NERIS webinar, 23rd Sept. 2021

Unmanned aerial detection of radiological data - Results of the EMPIR "Preparedness" project

-PREPAREDNESS-

Metrology for mobile detection of ionising radiation following a nuclear or radiological incident.

A. Vargas

Institute of Energy Technologies (INTE), Technical University of Catalonia (UPC)

WG3 (Environmental Dosimetry) - chair

- 1) Overview of the Preparedness project
- 2) Developed airborne detectors installed in UAVs, software control and data analysis: γ-spectrometric detectors and locator detector
- 3) Results of flight campaigns for radiological maps and source detection. Calibration of the developed aerial systems.
- 4) Video
- 5) On-going and future activities in EMPIR calls

The "Preparedness" EMPIR project WG3 – Environmental dosimetry 7th EURADOS/NERIS webinar, 23rd Sept. 2021

EMPIR is an European Metrology Research Programme within **EURAMET** (European Association of National Metrology Institutes) that has been developed as an integrated part of Horizon 2020. It s co-funded by Horizon 2020 and the EMPIR participating states.

https://www.euramet.org/research-innovation/research-empir/about-empir/

The **Preparedness Project** has been developed in the framework of **the Environment challenge call of 2016.**

http://www.preparedness-empir.eu/?page_id=1019

The **consortium** is composed by **17 participants**: 3 National Metrology Institutes (NMI), 3 Designated Institutes (DI), 10 external funded partners and 1 external unfunded partner.

Project started 1st August 2017, lasting 3-years + 6 months extension due Coronavirus.

The **specific objec**tives of the project are grouped in **4 Technical WP**, and **WP1** are related to **UAV**:

WP1 - Develop unmanned aerial detection systems installed on aerial vehicles.

γ-spectrometry systems

Drone: DJI Matrice 600 Pro (max. payload: 6 kg) CeBr₃ detector. Total weight: 1.5 kg

Drone: SWISSDRONE SDO 50 v2 Patrol engine Max. payload ~45 kg HPGe detector: total weight: 25 kg

WG3 – Environmental dosimetry 7th EURADOS/NERIS webinar, 23rd Sept. 2021

Drone: DJI Matrice 600 Pro (max. payload: 6 kg)

Nal detector detector Total weight: 1.4 kg

Drone: DJI F550 (max. payload: 0.6 kg) CZT detector. Total weight: 0.4 kg

Control software

The ground station (control) software displays real-time telemetry, dose rates, count rates, detector spectra and waterfall plots (i.e. time series of gamma-ray spectra). The different teams developed their own control software.

As an example, the RIMA-spec software is shown

Royo, P. et al. Using Unmanned Aircraft System for Detecting a Radiological Point Source. *Remote Sens.* 2018, 10(11), 1712

Development of gamma spectrum analysis software, methods to calculate $H^*(10)$ and activity concentrations

Main **Recommended methods** to implement in the calculations:

- For *H**(10) calculation, conversion coefficient method is recommended because is accurate, precise and robust.
- Man Made Count Rate (**MMCR**) is a robust and fast method to detect artificial radioactivity.
- Full Spectra Analysis (FSA) is one of the most promising methodology to calculate activity concentration
- Decision Thresholds for artificial radionuclide detection is also recommended to be calculated according to the actual background.

Calibration procedures

Temperature stabilization (climate chamber with Ra-226 source)

Altitude measurements (to calculated doses at 1 m, activity concentrations,....)

- the GPS and barometer measurements do not give information about the local terrain profile (hills and valleys cause height variations)
- The laser will be influenced by trees and brushes
- Humid grass can cause the laser to fail

Calibration procedures

2. Vertical flights over point source

Exponencial integral profile

Inverse of the square distance profile

Man-Made Count Rate (MMCR)

Background Nal spectrum at 20 m height (acquisition time close to 4 min)

The *ratio* is calculates when no artificial source is present , i.e., MMCR= 0.

ratio=
$$\frac{\sum_{320}^{1360} n(E)}{\sum_{1360}^{3000} n(E)} = 7.11 + 0.0018 * h(m)$$
 Nal 50mm x 50 mm

Calibration: decision thresholds

Background CeBr₃ $H^*(10)$ at 20 m height (acquisition time 2 s)

Decision threshold (ISO11929-4) $a^*=1.645 \sigma$

Response $\text{CeBr}_3 H^*(10)$ to a Cs-137 point source of 345 MBq at different heights (acquisition time 2 s)

9

Calibration: source location

Measurements carried out in a flat homogeneous terrain in an aerial site (Spain) using a Cs-137 point source of 345 MBq

Nal 50 mm x 50 mm

CeBr₃ 38 mm x 38 mm

CZT 1500 mm³

Source coordinates and corresponding uncertainties as measured with the NaI detector (top values) and the CeBr₃ detector (bottom values). Actual position is $41.612430 \pm 1.6E-5$ N, $0.854505 \pm 1.6E-5$ E.

Nominal altitude (m)	Longitude		Latitude	
	Measured	abs. difference (m)	Measured	abs. difference (m)
10	$0.854505 \pm 6E-6$	0.0 ± 1.4	$41.612420 \pm 5E-6$	1.1 ± 1.9
	$0.854505 \pm 1E-5$	0.0 ± 1.5	$41.612444 \pm 8E-6$	1.6 ± 1.6
20	$0.854513 \pm 1.6E-5$	0.7 ± 1.8	$41.612434 \pm 1.3E-5$	0.4 ± 2.3
	$0.854503 \pm 3.2E-5$	0 ± 3	$41.612411 \pm 2.4E-5$	2 ± 3
40	$0.85451\pm9\text{E-}5$	0 ± 8	$41.61245 \pm 6E-5$	2 ± 7
	$0.85434\pm2.0\text{E-}4$	14 ± 17	$41.61237 \pm 9E-5$	7 ± 10

Results of the decision thresholds and source location are published in:

Vargas , A. et al. Comparison of airborne radiation detectors carried by rotary-wing unmanned aerial systems. Rad. Meas. 145 (2021)

https://doi.org/10.1016/j.radmeas.2021.106595

Calibration: WISMUT CAMPAIGN

WG3 – Environmental dosimetry 7th EURADOS/NERIS webinar, 23rd Sept. 2021

Former Uranium mines and hidden Cs-137 and Co-60 point sources

Wismut: H*(10) and MMCR

Increases on the *H**(10) rates are due to variation in the natural activity concentration and to the presence of Cs-137 and Co-60 sources, but cannot be distinguished. However, *MMCR* can identify the presence of artificial sources.

Full Spectra Analysis (FSA)

FSA tool included in γ -aerospec software to calculate ground activity

Locator system

The drone goes to the detected source

 \vec{R} is the vector that indicates the source direction and has and Euclidean Norm equal 1

$$x = \frac{1}{n} \left\| \sum_{1}^{n} \vec{R} \right\|$$

WG3 – Environmental dosimetry 7th EURADOS/NERIS webinar, 23rd Sept. 2021

> Gimbal and detector mounted in the DJI Matrice 600 Pro

Video

https://www.youtube.com/watch?v=IV45uvionKI&t=46s.

On-going and Future activities

UAV's for remote alpha measurements (remoteAlpha EMPIR project)

Radioluminescense signal

Autonomous, AI-controlled UAV, specially for indoor accidents (METOXA EMPIR project in preparation)

WG3 – Environmental dosimetry

7th EURADOS/NERIS webinar, 23rd Sept. 2021

3D maps for radiological clouds (METOXA)

METOXA → https://msu.euramet.org/current_calls/greendeal_2021/index.html 16