

G. Baiocco

A micro- and nanodosimetry-based computational approach to characterize the effectiveness of a mixed radiation field

Giorgio Baiocco¹, PhD giorgio.baiocco@unipv.it

Radiation Biophysics and Radiobiology Group, Physics Department, University of Pavia, Italy

Microdosimetry / Nanodosimetry approaches with great potential

Radiation biological effectiveness can be ultimately traced back to the stochastic pattern of energy depositions at the micro- (and nano-)meter level

respectively, linear dimensions of structures of biological relevance as chromosomal domains and DNA double helix

Potential for applications to **mixed radiation fields** as **micro**- (and **nano**-)dosimetric quantities can both

- characterize the field (measurable!)
- be correlated with the biological outcome (RBE predictions!)

Microdosimetry / Nanodosimetry e.g. in ion-therapy

An example (**planning**)

On the concepts of dose-mean lineal energy, unrestricted and restricted dose-averaged LET in proton therapy

To cite this article: A Bertolet et al 2020 Phys. Med. Biol. 65 075011

prostate cancer clinical case - y_D (1µm) in color scale MicroCalc algorithm as a script in Eclipse - VARIAN

- dose mean lineal energy y_D and y_D derived restricted dose-average linear energy transfer LETd can be analytically computed and compared for clinical proton plans
- calculation of y_D opens to:
 - 1. characterization of the clinical beam by experimental measurements;
 - 2. optimization of proton treatments based on these quantities (RBE models)

Microdosimetry / Nanodosimetry e.g. in ion-therapy

An example (consequences)

Radiotherapy and Oncology 121 (2016) 395-401

Variable proton RBE

Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma

Christopher R. Peeler^{a,b}, Dragan Mirkovic^a, Uwe Titt^a, Pierre Blanchard^{c,d}, Jillian R. Gunther^c, Anita Mahajan^c, Radhe Mohan^{a,1}, David R. Grosshans^{c,*,1}

- RBE of a clinical proton beam set to 1.1 though it varies with beam penetration
- clinical evidence of correlation between high LET and changes in post-treatment MR images (a possible harbinger for severe reactions) for pediatric ependymoma proton therapy patients

(A)T2-FLAIR MR image, red hyper intense region for image change, CTV in blue.(B) superimposed treatment plan dose

G. Baiocco

The role of biophysical modeling

- Explore correlations of biological effects and micro- (nano)dosimetric quantities

SCIENTIFIC **REPORTS**

Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapyrelevant energies down to stopping

W. Friedland¹, E. Schmitt¹, P. Kundrát¹, M. Dingfelder², G. Baiocco³, S. Barbieri³ & A. Ottolenghi³

SCIENTIFIC REPORTS | 7:45161 | DOI: 10.1038/srep45161

- biophysical code PARTRAC
- prediction of different types of DNA damage (related to cell fate!) by different particles as a function of their linear energy transfer in the cell nucleus

what LET are we dealing with?

 $LET[keV\mu m^{-1}] = 6.2415[keV\mu m^{-3}Gy^{-1}]D[Gy]/\Phi[\mu m^{-2}]$

The role of biophysical modeling

- remembering, in the perspective of practical implementations, that this kind of results have to be accessed in the quickest possible way, *i.e.* not running full Monte Carlo simulations but taking advantage of databases and possibly their analytical representation.

SCIENTIFIC REPORTS

Analytical formulas representing track-structure simulations on DNA damage induced by protons and light ions at radiotherapy-relevant energies

Pavel Kundrát^{1,2}, Werner Friedland¹, Janine Becker¹, Markus Eidemüller¹, Andrea Ottolenghi³ & Giorgio Baiocco^{3⊠}

SCIENTIFIC REPORTS | (2020) 10:15775

 analytical fit to a large database of PARTRAC results
e.g. for DSB sites

Yield =
$$(p_1 + (p_2 LET)^{P_3}) / (1 + (p_4 LET)^{P_5})$$

Radiation Biophysics and Radiobiology - UniPv

G. Baiocco

Radiation transport: from the macro to the micro-scale

- **transport code** (as *e.g.* PHITS) can be developed to calculate **microdosimetric quantities** in **macroscopic regions**, again thanks to analytical formulas that have previously been implemented, tested to derive such quantities from full simulations of particle tracks

GEANT4 + *PARTRAC simulations*, *illustrative images for the "change" in spatial scale*

G. Baiocco

The biological effectiveness of a mixed field: general idea

- 1. USE a transport code
 - 2. derive for ALL PARTICLES (primary and secondaries) their
- relative contribution to the TOTAL DOSE
- an indicator of the spatial density of associated energy depositions at the micrometric scale, *e.g.* DOSE MEAN LINEAL ENERGY, y_D

in the macroscopic region of interest

G. Baiocco

3. query a database/analytical functions from track-structure codes to extract **damage associated to a given particle** at its given y_D

4. weigh such damage with the corresponding relative contribution to the total dose

5. sum all damages thus obtaining damage from the mixed field in the region of interest

The biological effectiveness of a mixed field: the neutron case

RBE for complex neutron induced DNA damage as a function of neutron energy

SCIENTIFIC REPORTS

The origin of neutron biological effectiveness as a function of

energy

G. Baiocco¹, S. Barbieri¹, G. Babini¹, J. Morini¹, D. Alloni^{2,3}, W. Friedland⁴, P. Kundrát⁴, E. Schmitt⁴, M. Puchalska⁵, L. Sihver⁵ & A. Ottolenghi¹

SCIENTIFIC REPORTS | 6:34033 | DOI: 10.1038/srep34033

G. Baiocco

Comparison to experimental data "condensed" in radiation protection standards (w_R)

DSB cluster: complex lesion, 2 or more DNA DSBs within 25 bp

The biological effectiveness of a mixed field: the neutron case "solved" with microdosimetry "only"

G. Baiocco

Application to treatment plans

active scanning pencil proton beam @ PSI

GEANT4 simulation, Gantry 1 @ PSI voxelized water phantom analytical parameterization of dose, energy and secondary neutron RBE varying beam energy

Predicted RBE for **DSB cluster** induction along x and z axes as a f. of distance from the Bragg peak

Neutrons in proton pencil beam scanning: parameterization of energy, quality factors

and RBE Uwe Schneider^{1,2}, Roger A Hälg^{1,2}, Giorgio Baiocco³ and Tony Lomax⁴

Phys. Med. Biol. 61 (2016) 6231-6242

G. Baiocco

In summary

- MICRO (and NANO)-dosimetric computational approaches (with full Monte Carlo simulations) coupled to the development of analytical formulas (and/or large databases of results) have great potential for applications
- a simple methodology can be developed, by which macroscopic radiation transport codes can be extended to predict biological effectiveness at the cellular/sub-cellular scale
- Biological effectiveness (in absolute terms, as well as in terms of RBE) for any mixed radiation field can be obtained, *e.g.*:
 - the one generated by an *ion beam in an oncological hadron therapy patient* (including secondary *neutrons*), thus supporting therapy planning optimization;
 - the one encountered by *an astronaut in a deep-space mission*, thus contributing to **risk estimation for space radiation protection**

... and the story is not over !

Thanks for your attention

G. Baiocco